Normal vascular development in mice deficient in endothelial NO synthase: possible role of neuronal NO synthase.

نویسندگان

  • Mohamed Al-Shabrawey
  • Azza El-Remessy
  • Xiaolin Gu
  • Steven S Brooks
  • Mohamed S Hamed
  • Paul Huang
  • Ruth B Caldwell
چکیده

PURPOSE Nitric oxide formation by nitric oxide synthase (NOS) has been implicated in vascular injury and retinal neovascularization during oxygen-induced retinopathy. However, the role of NOS in normal retinal vascular development and growth has not been studied. The purpose of these experiments was to characterize the expression of NOS in relation to vascular development and to determine the effect of deleting endothelial NOS (eNOS) on this process. METHODS Retinal vascular development was analyzed in 150 eNOS+/+ and eNOS-/- mice ranging from 1 day to 6 months old by using a combination of morphometric and biochemical approaches. The pattern of vascular development was analyzed in retinal tissue sections and whole-mount preparations labeled with fluorescein-conjugated Griffonia simplicifolia lectin. Analysis of vascular density and arterial diameter were performed with the lectin-labeled whole-mounts using computer-assisted morphometry. NO production was quantified by measuring retinal levels of nitrate/nitrite accumulation using the Greiss reaction. Western blotting techniques with isoform-specific NOS antibodies were used to evaluate differences in levels of NOS protein expression. Retinal distribution of nNOS was characterized using nNOS immunocytochemistry and NADPH diaphorase histochemistry. RESULTS These analyses showed that the rate and pattern of retinal vascular development in eNOS-/- mice were comparable with those in wild-type control mice. Measurement of vascular density showed no significant differences between the two strains. The amount of NO production in the eNOS-/- retina was also equivalent to that in the eNOS+/+ retina. Analysis of nNOS expression within the eNOS+/+ and eNOS-/- mice showed similar levels of total nNOS protein in the two strains. Inducible NOS was not detected in either strain. Studies of nNOS distribution showed intense labeling of the deep capillary plexus in the eNOS-/- retina. This was not seen in the wild-type retinas. The number of neuronal cells showing NADPH-diaphorase activity was also significantly increased in the eNOS-/- mice. CONCLUSIONS Development of the retinal vasculature occurs normally without eNOS. The observations of similar levels of NO production, perivascular redistribution of nNOS and increased numbers of NADPH-diaphorase reactive neurons in the eNOS-/- retinas suggest that increases in vascular-associated nNOS activity compensate for the eNOS deficiency in the developing mutant retina.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Nitric oxide and the bioactivities

Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...

متن کامل

Nitric oxide and the bioactivities

Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...

متن کامل

P-235: No Association of Endothelial Nitric Oxide Synthase (eNOS) -786T/C Polymorphism with Unexplained Recurrent Abortion in Iranian Women

Background: This is a case-control study to determine the relationship between endothelial nitric oxide synthase (eNOS) gene -786T/C polymorphism in women with unexplaiend recurrent abortion in comparison with healty women.Materials and Methods: 95 women with history of at least 2 unexplaiend recurrent abortion in the reproductive age range 20-35 years as patients group and 95 healty women (age...

متن کامل

Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase.

BACKGROUND Endothelium-derived nitric oxide (NO) is produced by an oxidative reaction catalyzed by endothelial NO synthase (eNOS). NO plays a crucial role in controlling cell growth and apoptosis, as well as having well-characterized vasodilator and antithrombotic actions. More recently, endothelium-derived NO was shown to be involved in postdevelopmental vascular remodeling and angiogenesis, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular vision

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2003